

D1.2 – Open Security Preserving Data and Services

Connectivity Components - Federation of IWT Systems

Lead Beneficiary: Konnecta Systems Limited

Delivery Date: 29/5/2023

Dissemination Level: Public

Type: Report

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 861377.

Ref. Ares(2023)3750250 - 31/05/2023

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 1

Document Information

Title: Innovation-driven Collaborative European Inland Waterways Transport Network

Acronym: IW-NET

Call: H2020-MG-2019-TwoStages

Type of Action: RIA

Grant Number: 861377

Start date: 01 May 2020

Duration: 36 Months

URL www.iw-net.eu

Deliverable

Title
D1.2 – Open Security Preserving Data and Services Connectivity Components -
Federation of IWT Systems

Work Package
WP2: IWT Infrastructure improvements and TEN-T, Sea and Inland Ports
Integration

Dissemination Level Public

Delivery Date 29/5/2023

Lead Beneficiary Konnecta Systems Limited (KCT)

Lead Authors
Nikos Chalvantzis (ICCS), Evie Kassela (ICCS), Harris Niavis (INLE), Dr. Aristea
Zafeiropoulou (KCT)

Document History

Version Date Modifications Contributors

0.1 20/06/2022 Created ToC

Nikos Chalvantzis,
Evie Kassela,
Harris Niavis,
Aristea Zafeiropoulou

0.2 14/12/2022 Received contributions in chapters 2, 3
Nikos Chalvantzis,
Evie Kassela

0.3 30/1/2023 Received contribution in chapter 4 Harris Niavis

0.4 3/2/2023 Added Summary Aristea Zafeiropoulou

0.5 7/2/2023
Added Introduction, Conclusions, ready
for peer-review

Nikos Chalvantzis,

Aristea Zafeiropoulou

0.6 29/5/2023 Added feedback from peer review
Harris Niavis,
Nikos Chalvantzis

file://///timor/inflog/Projekte/3344_IW-NET/4.Arbeitspakete/WP2%20IWT%20Infrastructure%20improvements/Deliverables/www.iw-net.eu

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 2

Executive Summary

The "Innovation-driven Collaborative European Inland Waterways Transport Network" project is

supported by the European Commission under the “Moving freight by Water: Sustainable

Infrastructure and Innovative Vessels” topic of the Horizon 2020 research and innovation programme

under grant agreement No 861377.

The present deliverable presents the work undertaken under Task 1.2 Open security preserving data

and services connectivity components - federation of IWT systems that aims at fulfilling the project

Objective (O1), i.e., the development of an open IWT digitalisation infrastructure and accompanying

services for IWT integration in multimodal transport and urban logistics.

Work towards the fulfilment of this objective has been focused on three main aspects. The first has

been devoted towards the development of a publish-subscribe mechanism via Apache Kafka that will

enable the information sharing and storing within the IW-NET Big Data Analytics Platform.

The second part of the work deals with the secure identity management for secure communication

and information sharing within the project. The developed solution, based on Keycloak, incorporates

the security aspect within the IW-NET information exchange and is deployed on top of the event-based

publish-subscribe solution.

The third part of work introduces Blockchain technology to the project by enabling trusted data

exchange between IW stakeholders across the entire transport chain. In conjunction with Blockchain,

the use of IoT devices supports live monitoring of logistics assets which in turn enhances cargo

traceability. The integration of IoT and Blockchain enables the employment of smart contracts to

automate processes and improve accountability of actions and logistics events.

All three solutions are brought together to constitute the open IWT digitalisation infrastructure that

aims at applying the latest technologies in IT in the field of logistics. In this manner, logistics

stakeholders embrace transparent, accessible, and automated operations through the use of the latest

technological advances such as Big Data, Internet of Things, Blockchain and Artificial Intelligence.

Disclaimer

The authors of this document have taken any available measure to present the results as accurate,

consistent and lawful as possible. However, use of any knowledge, information or data contained in

this document shall be at the user's sole risk. Neither the IW-NET consortium nor any of its members,

their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any

loss, damage or expense whatever sustained by any person as a result of the use, in any manner or

form, of any knowledge, information or data contained in this document, or due to any inaccuracy,

omission or error therein contained.

The views represented in this document only reflect the views of the authors and not the views of INEA

and the European Commission. INEA and the European Commission are not liable for any use that may

be made of the information contained in this document.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 3

Table of Contents

1 Introduction ... 6

1.1 Focus of the Deliverable .. 6

1.2 Mapping IW-NET Outputs ... 7

2 Publish-Subscribe Event-based Architecture. ... 9

2.1.1 The classical approach: Message Queues ... 9

2.1.2 Publish-Subscribe messaging... 10

2.2 The Publish-Subscribe Architecture in IW-NET ... 11

2.2.1 Moving on from the SELIS approach ... 11

2.2.2 Introduction to Apache Kafka .. 11

2.2.3 Interaction with other components .. 15

2.3 System design and deployment .. 16

2.4 Added Value for the IW-NET Architecture .. 18

3 Secure Access and Identity Management ... 19

3.1 IAM Framework ... 19

3.2 IAM Framework Configuration and Workflows .. 21

3.2.1 IW-NET IAM Configuration .. 21

3.2.2 Secure Access Workflows .. 28

3.3 Deployment ... 31

3.4 Added Value for the IW-NET Architecture .. 31

4 IoT Data Streaming Integration with Blockchain ... 33

4.1 Blockchain and IoT ... 33

4.2 The IW-Net Blockchain connector ... 33

4.3 Design and Architecture .. 34

4.4 Implementation ... 35

4.5 Added Value for the IW-Net Architecture ... 36

5 Conclusion ... 37

6 References ... 38

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 4

List of Figures

Figure 2-1 High-Level Architecture of the IW-NET ecosystem .. 9

Figure 2-2 Message exchange using a simple point-to-point message queue [1]. 10

Figure 2-3 Message Exchange implemented according to the Publish-Subscribe paradigm [1]. 11

Figure 2-4 Apache Kafka architecture ... 12

Figure 2-5: The star schema employed by the BDA. ... 15

Figure 2-6: BDA low-level architecture ... 16

Figure 2-7 Deployment plan and interactions between the Pub/Sub, IAM and BDA components 18

Figure 3-1: Integration of the Security Services with the IW-NET components 19

Figure 3-2: Create Client Scope for the Kafka broker .. 22

Figure 3-3: Create Client for the Kafka broker .. 22

Figure 3-4: Associate client with client Scope for the Kafka broker.. 23

Figure 3-5: Create Client Scope for Kafka producer .. 23

Figure 3-6: Create Client for Kafka producer .. 24

Figure 3-7: Associate client with the required Scopes for the Kafka producer 24

Figure 3-8: Create a Keycloak client for the REST server .. 25

Figure 3-9: Update the properties of the REST server .. 25

Figure 3-10: Create a Role describing the Users ... 26

Figure 3-11: Define the Users in the Role ... 26

Figure 3-12: Create a Resource that contains some URIs ... 27

Figure 3-13: Create a Role Policy for the previously defined Role .. 27

Figure 3-14: Create the Permission that will associate the Resource with the Policy 28

Figure 3-15: Publish message workflow .. 29

Figure 3-16: Subscribe to message workflow .. 30

Figure 3-17: Workflow for REST API secure access ... 31

Figure 4-1. Blockchain Connector Component.. 35

List of Tables

Table 1: Adherence to IW-NET’s GA Deliverables & Task Descriptions .. 7

Table 2 Kafka Client request API ... 13

Table 3: Blockchain REST Server Endpoints ... 36

file://///Users/aristeazaf/Downloads/D1.2%20-%20Open%20security%20preserving%20data-v06.docx%23_Toc136257958

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 5

Glossary of Terms and Abbreviations

Abbreviation /
Term

Description

API Application Programming Interface

BDA Big Data Analytics platform

Dn.m IW-NET Deliverable number

EPCIS Electronic Product Code Information Services

IAM Identity and Access Management

IO Input/Output

IoT Internet of Things

IWT Inland Waterway Transport

JSON JavaScript Object Notation

OAuth Open Authorization

OS Operating System

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

REST Representational state transfer

SAML Security Assertion Markup Language

SSCC Serial Shipping Container Code

TCP Transmission Control Protocol

TI Transport Instruction

TIR Transport Instruction Response

TSN Transport Status Notification

WP Work Package

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 6

1 Introduction

1.1 Focus of the Deliverable

Work Package 1 focuses on the implementation of Digitalisation Infrastructure and Services that

enable the application of the latest technologies in IT in the field of logistics. The vision is a business

that embraces transparent, accessible, and automated operations assisted by recent technological

advances such as Big Data, Internet of Things, Blockchain and Artificial Intelligence.

All the above are only possible given a trustworthy, reliable, and resilient technical infrastructure which

has the technical capabilities to support demanding applications. This report documents the work

undertaken towards building the components of the infrastructural stack that implement the message

exchange/communication and security aspects of the WP1 technical solution. Additionally, it presents

the development of automated and trustworthy smart contracts enabled via Blockchain technology

and its integration with data coming from IoT devices.

The purpose of this document is to provide the reader with a good understanding of how and why

certain system design decisions were made. In the cases of the Publish/Subscribe Architecture and the

IoT Streaming integration with Blockchain, it highlights some of the most significant instances of

message exchange between IW-NET architectural building blocks. More specifically, the former

documents the internal workings of the most common communication channel, acting as a “messaging

highway” and interconnecting all the parts of our design, while the latter sheds light on a very specific,

one-to-one instance of communication between IoT and Blockchain. Finally, the section dedicated to

the Secure Access and Identity Management component documents the workflows that allow us to

secure and protect the sensitive services, data and digital resources which are an integral part of the

project’s outcomes.

The document is divided into separate chapters:

 Chapter 2 is dedicated to the architecture of the Publish-Subscribe service. A more detailed

technical description of the system design and deployment is included in D1.6 Big Data

analytics linked with IWT corridor data hub Version 2.

 Chapter 3 presents the Access and Identity Management solution developed in the IW-NET

connectivity layer.

 In Chapter 4 the IW-NET Blockchain component is presented in detail along with its

integration with IoT data. The smart contracts, the relevant APIs and the Blockchain

infrastructure are explained further in D1.7 Synchro-modality booking and execution

management dashboard and architecture extensions, Dynamic optimisation Version 1.

 Finally, a conclusion outlines the key takeaways from the work undertaken in Task 1.2.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 7

1.2 Mapping IW-NET Outputs

The following table (Table 1) provides a map of the deliverable D1.2 and the corresponding task
descriptions to the content of this document.

Table 1: Adherence to IW-NET’s GA Deliverables & Task Descriptions

DELIVERABLE

D1.2

Report on the IW-NET security federation layer, including Identity
Management, and Blockchain to implement the IW-NET data
governance, and Publish-Subscribe events architecture and
components and the integration of the IoT data flows layer.

TASKS

T1.2 Open security
preserving data and
services connectivity
components - federation of
IWT systems

Leader: KCT
Participants: ISL, INLE,
VLTN, NGS, KUL

Develop a Secure Services Federation layer integrating, extending and
using open-source components to seamlessly and securely exchange
information between infrastructures and systems, enabling data
harmonisation in IWT, connectivity with Inland Port Management and
Transportation Management systems. Apply and configure State-of-
Art security options including secure access, identity management
(IAM) and Blockchain, for reliable data transfers via Publish-
Subscribe, and IoT data streaming.

IW-NET GA
Component
Title

IW-NET GA Component Outline Respective Document
Chapter(s)

ST1.2.1 Secure
Access and
Identity
Management
(ICCS)

Configure and use Identity Management (IAM)
solutions already developed in SELIS to automate
secure access and a permissions system for all
information accessing, exchanging, and routing.
Configure and use Keycloak or equivalent federated
solution for user authentication with single sign-on,
with standard protocols such as OpenID Connect and
OAuth. Develop a directory service for all IW-Net IAM.
Adapt SELIS Community Nodes to link IW infrastructure
data and securely deploy IW related services, including
the secure storage of data with end user privacy
safeguards. Enable secure communications between
services, secure and private communication. Introduce
end-to-end cryptographic protocols, to enable cyber-
Secure solutions deployment and operation. Deliver a
complete environment to include and support all IW-
Net Business Cases and their security needs.

In this report we discuss
our implementation of
the IAM solution
adopted in the context
of IW-NET (Chapter 3).
We deploy and
configure a solution
based on Keycloak and
expose its role in the
general architecture and
its interactions with
other key components.

ST1.2.2
Publish –
Subscribe
event-based
Architecture
(ICCS)

SELIS Publish-Subscribe architecture components will
be integrated and form the backbone of asynchronous
information exchanges in IW-Net, for performance and
scalability. Different deployment topologies and
configurations of the publish-subscribe system will be
investigated depending on the different Business Case
workload scenarios, mainly to integrate Infrastructure
related information exchanges and the linking to back-

In this report we
introduce the IW-NET
implementation of a
Publish/Subscribe
service based on SELIS
(Chapter 2). We
highlight the strengths
of our architecture

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 8

end systems. Performance will be tuned to match the
needs of the IW-Net overall system topology,
identifying stressed services and components and
possible bottlenecks. The IW-Net solution will be tested
for scalability so to accommodate the required large
numbers of data consumers and producers serving the
transactions of the IW-Net users including their
transport means and the near real-time message
routing involving River Infrastructure notifications.

designs and discuss the
reasons why a Publish-
Subscribe message
exchange service
perfectly fits the use
cases we encounter in
the context of IW-NET.
Our system design and
deployment are
consistent with that of
the Big Data Analytics
Platform described in
deliverables D1.5 and
D1.6, providing
scalability and support
for workloads of
arbitrarily large volume.

ST1.2.3 IoT
data
Streaming
Integration
with
Blockchain
(INLE)

Use blockchain technology to improve processes and
transactions along the whole transport chain as well as
the visibility of shipments and the provenance of
messages and notifications as a key enabler of synchro-
modality. Analyse the needs of the transactions
between the IWT actors in IW-Net Business Case
scenarios and produce designs and configurations to
integrate blockchain technologies so to assure
auditability, immutability and governance of data
sharing. Build on the Blockchain components
developed in CHARIoT using distributed ledger
technology to simplify, standardise and streamline
interorganizational workflows and the non-repudiation
of milestone events and notifications.

Chapter 4 is dedicated
to the IW-NET
Blockchain component.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 9

2 Publish-Subscribe Event-based Architecture
A Publish-Subscribe messaging system is a fundamental building block in our envisioned IW-NET

architecture. As the channel through which all communication between components is materialised,

the list of functional and non-functional requirements is both long and critical in nature. The

communication channel required to support the intricate and diverse structure of IW-NET must exhibit

characteristics such as high availability, fault tolerance, and scalability.. In the following section, we

discuss the way we have achieved our goal of designing and implementing a communication

mechanism that meets the high standards set by our vision of IW-NET.

Publish-Subscribe messaging is a paradigm of asynchronous service-to-service communication, that

originates from the older, more classical approach of Message Queues and is typically utilised in state-

of-the-art serverless and micro-service architectures. The Publish/Subscribe pattern, also referred to

as Pub/Sub, is a design pattern that provides a framework for message exchange between services. It

involves a message broker that receives and relays messages from clients that publish data, known as

publishers or message producers, to clients that consume it, known as subscribers or message

consumers. Publishers can broadcast messages in various topics, while subscribers declare the topics

they wish to subscribe to, to receive messages published there. Messages published to a topic are

immediately received by all clients that have subscribed to it. The Pub/Sub message exchange

paradigm is considered ideal for enabling event-driven architectures as well as decoupling applications

to increase performance, reliability, and scalability.

In the rest of this section, we will introduce the basic concepts and principles of message exchange,

discuss how those are implemented by Apache Kafka – an open-source, state-of-the-art software upon

which the IW-NET Pub/Sub mechanism relies – and explain the interaction between the Pub/Sub

mechanism and other architectural components of IW-NET (Figure 2-1).

Figure 2-1: High-Level Architecture of the IW-NET ecosystem

2.1.1 The classical approach: Message Queues

The concept of message exchange is significant in modern distributed, event-driven software

architectures. In such complex software designs, it is standard practice to decouple the functionality

into small, independent units. Message Queues are the simplest way to implement a message

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 10

exchange service in a reliable, asynchronous manner. According to the Message Queue design,

independent software components communicate by sending each other data in the form of messages

rather than contacting each other directly. The concept of queueing means that messages are placed

on queues in temporary storage, allowing components to function independently of each other, at

different speeds and times, in different locations, and without needing a logical connection between

them, thus implementing an asynchronous communication pattern. Queuing allows us to:

 Achieve cross-component communication (even across component which might each be

running in different environments) without having to implement the communication.

 Select the order in which a software component processes messages.

 Balance loads on distributed systems by arranging for more than one instances of a client to

service a queue when the rate at which messages arrive exceeds a threshold.

 Increase the availability of services and applications by supporting recovery routines to service

the queues in cases of failures, as messages do not get lost.

Typically, in micro-service architectures, there are cross-dependencies, which entail that no single

service can perform its functionalities without interacting with other components. Message Queuing

is a perfect fit for the microservice architectural design by allowing components to exchange data

with each other without getting blocked by responses. Usually, messages are lightweight and contain

event-related data, requests, replies to error messages etc.

In traditional Message Queue implementations, although the queue can be accessed by multiple

clients, each message is strictly processed only once, by a single consumer. Therefore, this messaging

paradigm is often referred to as a one-to-one, or point-to-point, communication pattern. An example

of message exchange system architecture implemented using the Message Queue paradigm can be

seen in Figure 2-2.

Figure 2-2: Message exchange using a simple point-to-point message queue [1].

2.1.2 Publish-Subscribe messaging

In contrast to the simpler Message Queue architecture, the Publish-Subscribe model allows messages

to be broadcast to multiple receivers asynchronously. In the Pub/Sub paradigm, each topic essentially

implements a concept analogous to a queue in the Message Queue model, providing:

 a lightweight mechanism to broadcast asynchronous event notifications, and

 endpoints that allow software components to connect to the topic in order to send and
receive those messages.

To broadcast a message, a publisher pushes a message to a specific topic. All subscribers that are

registered to the topic will receive every message published in it. In a Pub/Sub system, publishers do

not need to know which subscriber consumes the messages they broadcast, and, similarly, subscribers

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 11

do not need to know which publisher is the origin of the messages they receive. Operating between

the publishers and subscribers, a Pub/Sub broker is orchestrating the message exchange. The broker

role consists of keeping a catalogue of registered topics and subscribers, receiving messages,

temporarily storing them, and subsequently pushing them to the subscribed clients, therefore carrying

all the complexity and intricacy of the message exchange protocol implementations.

This more flexible pattern of message exchange contrasts with the point-to-point approach we

examined earlier, in which the applications that play the role of the publisher need to provide

information on the expected receivers of the messages that are sent through the system.

Figure 2-3: Message Exchange implemented according to the Publish-Subscribe paradigm [1].

Figure 2-3 displays an example of the architecture of a typical Publish-Subscribe message exchange

system. One can notice that distinct topics essentially act as individual Message Queues – with the

exception that multiple subscribers can receive the same messages simultaneously, if necessary.

2.2 The Publish-Subscribe Architecture in IW-NET

2.2.1 Moving on from the SELIS approach

In comparison to the solutions adopted in the scope of SELIS, we have chosen to move into a different

direction in the context of the implementation of the Publish-Subscribe component. In SELIS we chose

to utilise a research prototype developed by SELIS partners TU Dresden to implement the message

exchange between components. Since the source code of that specific software solution is not part of

the software that was open-sourced and made publicly available after the conclusion of the SELIS

project, we were forced to reconsider our options regarding the implementation of the IW-NET

Pub/Sub component. We selected to use Apache Kafka, a powerful streaming platform that excels in

handling high-throughput, fault-tolerant, and scalable data streams. Its versatility and extensive

ecosystem make it a popular choice for building real-time data pipelines and enabling streaming

analytics in a wide range of applications and industries.

2.2.2 Introduction to Apache Kafka

In comparison to the solutions adopted in the scope of SELIS, we have chosen to move into a different

direction in the context of the implementation of the Publish-Subscribe component. In SELIS we chose

to utilise a research prototype developed by SELIS partners TU Dresden to implement the message

exchange between components. Since the source code of that solution is not part of the software that

was open-sourced and made publicly available after the SELIS project finished, we were forced to

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 12

abandon that solution. We selected to use Apache Kafka, a powerful streaming platform that excels in

handling high-throughput, fault-tolerant, and scalable data streams. Its versatility and extensive

ecosystem make it a popular choice for building real-time data pipelines and enabling streaming

analytics in a wide range of applications and industries.

To accommodate the message exchange needs of IW-NET, we have deployed and appropriately

configured a distributed Pub/Sub system implementation based on open-source, state-of-the-art

software, Apache Kafka [2]. Apache Kafka is a distributed event streaming platform widely adopted by

companies and research organizations around the globe. It is a powerful tool for the implementation

of high-performance data pipelines, streaming analytics, and mission-critical applications. Kafka is

based on the principles of the Publish/Subscribe model but further extends those, providing high

throughput, scalability, permanent storage, and high availability.

We already described the basic theoretical principles of the Pub/Sub message exchange in the previous

section. Kafka implements that architecture as a distributed, scalable system, therefore being able to

serve arbitrarily high load by leveraging parallelism. More specifically, Kafka can scale, employing

multiple message brokers that work in sync, forming a cluster. However, the maintenance and

management of a cluster of message brokers introduces extra complexity. Problems such as

synchronisation and consistency may appear, therefore appropriate mechanisms need to be in place.

Kafka relies on Zookeeper [5] – i.e. a software designed to maintain configuration information, naming

and to provide distributed synchronisation to distributed applications – to serve as its cluster manager.

In the following sections we will discuss how our deployment of Kafka as part of the IW-NET

architecture tackles such challenges.

Figure 2-4: Apache Kafka architecture

2.2.2.1 Network and Request APIs

Kafka uses a binary protocol over TCP [3]. Interaction between the brokers and clients takes place

through six core client request APIs, listed in Table 2.

In a typical scenario, the client initiates a socket connection, writes a sequence of request messages,

and finally reads back the corresponding response message. In a distributed deployment, the client

will likely need to maintain a connection to multiple brokers, as data is partitioned, and the clients will

need to connect to the server where the data they want to read or write belong to. However, it should

not generally be necessary to maintain multiple connections to a single broker from a single client

instance (i.e., connection pooling).

The server guarantees that on a single TCP connection, requests will be processed in the order they

are sent, and responses will return in that order as well. The broker's request processing allows only

a single in-flight request per connection to guarantee this ordering. Despite that, clients can use non-

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 13

blocking IO to implement request pipelining and achieve higher throughput. i.e., clients can send

requests even while awaiting responses for preceding requests since the outstanding requests will be

buffered in the underlying OS socket buffer. All requests are initiated by the client, and usually result

in a corresponding response message from the server.

Table 2: Kafka Client request API

Client request API Description

METADATA Describes the currently available brokers, their host and port information, and gives
information about which broker hosts which partitions.

SEND Send messages to a broker

FETCH Fetch messages from a broker, one which fetches data, one which gets cluster metadata, and
one which gets offset information about a topic.

OFFSETS Get information about the available offsets for a given topic partition.

OFFSET COMMIT Commit a set of offsets for a consumer group

OFFSET FETCH Fetch a set of offsets for a consumer group

2.2.2.2 Topics & Partitions

Kafka follows the general Pub/Sub design where messages are organised into topics. Publisher clients

write data to specific topics, while subscriber clients can only read messages published to the topics

they have subscribed to.

Kafka topics can be divided into several partitions, which contain messages (records) in an immutable

sequence. Each record is assigned to a partition and can further be identified by its unique offset. In a

distributed Kafka broker deployment, having implemented multiple partitions allows topics to be

parallelised by splitting their partitions across multiple brokers. Subscriber clients can read from topics

with multiple partitions in parallel.

Additionally, Kafka uses data replication on a partition level, to prevent data loss in case of broker

failure. Usually one or more replicas (copies) over as many brokers in the cluster are maintained for

each partition. For every partition, one of the brokers acts as a leader while the rest are followers. The

leader is tasked with serving all read-write requests for its specific partition, whereas followers

maintain replicas of the leader’s data. According to the protocol, if a leader broker fails, one of the

followers replaces it as the new leader. Every time a record is published to a topic, the leader broker

of the partition it belongs to handles the write request. The leader appends the record to the commit

log of the appropriate topic’s partition and increments its record offset. Kafka only exposes messages

that have been committed and distributed to the followers.

The number of partitions into which each topic is split is predefined. Topic partitions themselves are

nothing more than ordered "commit logs" numbered 0, 1, ..., P, while P is the number of partitions.

The brokers do not enforce semantics of which messages should be published to a particular partition.

On the contrary, it is the Kafka clients that directly control the assignment of messages to specific

partitions. In order to publish messages, clients need to directly address them to a particular partition.

In similar fashion, when fetching messages, those need to originate from a particular partition. If

consistency between the partitioning scheme between multiple clients is desirable, they clients must

use the same method to compute the mapping of message key to partition.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 14

Requests from clients to publish or fetch data must be sent to the broker that is acting as the leader

for a given partition. This condition is enforced by the broker, so a request for a particular partition to

the wrong broker will result in a NotLeaderForPartition error code.

Obviously, because of the protocol policies discussed so far, when trying to read or write, clients need

to know which broker leading of partition they should read to/read from. This happens through a

process called “bootstrapping” in Kafka terminology. Clients need to issue a request for meta-data

about the state of the cluster. Any active broker can be the recipient of such a request, as they all

maintain and update a list of available topics, their respective partitions and the brokers that lead

them. Since any broker can respond to this initial request, it is common practice for clients to cycle

these meta-data requests through a known list of available brokers to balance their load more

efficiently.

The client does not need to keep polling to see if the cluster has changed; it can fetch metadata once

when it is instantiated cache that metadata until it receives an error indicating that the metadata is

out of date. To summarize, the steps followed by a client interacting with the Kafka cluster are the

following:

 Cycle through a list of Kafka brokers to complete the "bootstrapping" process, until a

connection has successfully been established. Fetch cluster meta-data.

 Process read or write requests, directing them to the appropriate broker based on the

topic/partitions they send to or fetch from – more on this topic in the following sub-section.

 In the case of an error that indicates cluster state has shifted, refresh the metadata and try

again.

2.2.2.3 Partitioning Strategies

Having discussed the protocols that Kafka implements, we should next focus on the logic behind the

topic partitioning. As highlighted earlier, it is the clients’ responsibility to enforce and maintain a

consistent partitioning scheme across a specific topic. The criterion that dictates the partitioning policy

depends on the type of application and data at hand. More specifically, partitioning serves two

purposes in Kafka:

 Balance the data and request load over available brokers, and

 Distribute the processing load among consumer processes while allowing local state and

preserving order within the partition.

A simple approach to accomplish simple load balancing could be for clients distribute requests in a

round robin fashion over the list of all available brokers. Another alternative, in an environment where

there are many more message publishers than brokers, would be to have each client choose a single

partition at random and publish to that. The latter will additionally result in far fewer TCP connections.

In order to distribute processing loads, we would have to impose a partitioning scheme where records

that would be processed as a group would be assigned to the same partition. We can achieve that

using a key in the message to assign messages to partitions. By default, the hash of the key is utilised

to calculate the appropriate partition but this behaviour can be overridden, if the user decides to do

so.

2.2.2.4 Offsets: progress tracking and Consumer Groups

Kafka brokers temporarily retain messages for a configurable retention period to account for possible

failures and provide the feature of stream replay-ability, the option to repeat the messages of a specific

topic, if necessary. All message data and meta-data are retained in log files, stored in the brokers’ local

file systems. Subscribers are responsible for tracking the position of the records they want to read in

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 15

the log, known as the “offset”. Typically, a subscriber advances the offset in a linear manner,

consuming and processing messages in the order they have been sent in. However, subscriber

applications can consume messages in any order, as long as they are aware of the offset of the

messages they need to fetch.

In order to serve high data throughput, subscribers – also called consumers in Kafka semantics – can

be organised in consumer groups. Consumer groups consist of multiple consumer applications the total

of which can only read every record of a particular topic exactly once. Kafka can support a large number

of consumers and retain large amounts of data with very little overhead. By using consumer groups,

consumers can be parallelised so that multiple consumers can read from multiple partitions on a topic,

allowing a very high message processing throughput. The total number of a topic’s partitions dictates

the maximum parallelism of its consumers, as there cannot be more consumers than partitions.

Brokers distribute read requests across the

various consumer applications of a group while

also keeping track the offset for the consumer

group for each partition. The latter is tracked

by having all consumers commit the offsets of

the records they have handled. Whenever a

consumer is added or removed from a group, a

rebalancing procedure takes place. That causes

consumers to stop, so unstable clients which

often suffer time-outs or are often restart will

highly affect the throughput. Consumer

applications across specific groups need to be

stateless, since rebalancing the load might

result in different partition assignments

compared to the original.

2.2.3 Interaction with other components

In IW-NET, the Pub/Sub infrastructure plays the role of the main message exchange channel between

the various system components. Components which serve as data sources publish event-related

messages to designated Pub/Sub topics. Components which serve as data sinks subscribe to the topics

they are interested in and receive all the messages published there. The architecture of the Pub/Sub

mechanism is designed in a manner that allows Kafka to take advantage of its scaling capabilities, based

on the volume of the incoming messages.

All interactions of other components with the Pub/Sub mechanism are authorised through the security

component presented in chapter 3. This ensures that clients that try to establish a connection to the

brokers to either submit or request data have the privileges to perform the respective actions.

Unauthorised action requests are automatically blocked, as explained in detail in the next section.

2.2.3.1 Interaction with the Big Data Analytics platform

Although messages that pass through the Pub/Sub mechanism are retained for a configurable amount

of time, the Pub/Sub is not the responsible component for persistent storage. Instead, the component

responsible for storage is the Big Data Analytics platform (BDA), introduced in D1.5 and is illustrated

in Figure 2-6. Following the specifications thoroughly discussed in that report, we design the IW-NET

message exchange service to be compliant with the star schema that the BDA utilises, depicted in

Figure 2-5.

Figure 2-5: The star schema employed by the BDA.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 16

Figure 2-6: BDA low-level architecture

The topics created are mapped to the existing message types. Each message that is published to

these topics passes through the brokers. It is then received by a subscriber group that resides within

the Connector module of the BDA1. The Connector module is responsible for overseeing its smooth

operation and has been tasked and configured to scale the allocated resources according to the volume

of the incoming messages in order to ensure unobstructed operation of the BDA workflows. More

specifically, when initialised, the Connector deploys a single instance of a pub/sub subscriber, running

in a dedicated thread. The Connector module monitors the traffic and throughput of the subscriber

that processes the incoming messages before they are stored and, if necessary, can deploy additional

instances of the service. These additional instances also run in dedicated threads and belong to the

same consumer group, therefore achieving load balancing while additionally ensuring that each

message is only processed exactly once.

2.2.3.2 Interaction with EPCIS and other IW-NET components and services

Besides the BDA, which is a core component of the IW-NET architecture, we have created templates

for the implementation of lightweight Publish-Subscribe clients which can play either the role of data

producers or consumers in our application scenarios. The codebase of these templates has been made

available to partners responsible for the development of services and components included in the IW-

NET architecture as envisioned for the needs of WP1. Most notably, during the last months of the

development tasks, the involved project partners have successfully achieved integration with the EPCIS

services. EPCIS stands for Electronic Product Code Information Services. It is a standardized data format

and interface for capturing and sharing supply chain event information. EPCIS provides a framework

for tracking and tracing products as they move through the supply chain, enabling visibility and

transparency into product movements, locations, and events. It is commonly used in industries such

as retail, logistics, and healthcare to capture and exchange information related to the movement and

status of products, including their origin, production, shipping, and receipt.

 EPCIS provide a steady flow of data into the IW-NET ecosystem. However, as the work package tasks

under development continue to mature, an even higher degree of integration can be expected, since

the Publish-Subscribe system, protected by the Secure Access and Identity Management service

described in Chapter 3 is the de facto channel of communication between distinct sub-systems and

components.

2.3 System design and deployment

The system design and deployment plan for the Publish/Subscribe system of IW-NET is consistent with

those of the core BDA and the Identity and Access Management (IAM) component. All three IW-NET

1 The role of the Controller module is extensively discussed in sub-section 2.5.1 of Deliverable 1.5.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 17

components’ requirements and interactions have been considered since the first iterations of system

design and deployment plan cycles.

As far as the Pub/Sub mechanism is concerned, it is worth highlighting that in the IW-NET

implementation, its cluster of brokers is deployed as containerised applications leveraging

Kubernetes2. Kubernetes, or K8s, is an open-source system for automating deployment, scaling, and

management of containerised applications.

Containerisation is a deployment method that involves encapsulating an application and its

dependencies into a self-contained unit called a container. Containers provide an isolated and portable

environment for running software applications. They package everything needed for an application to

run, including the code, runtime, system tools, libraries, and settings.

Containerisation offers several benefits as a deployment method. Firstly, it provides consistency and

reproducibility across different environments, ensuring that the application behaves consistently

regardless of the underlying infrastructure. Containers are also highly portable, allowing applications

to be easily moved and deployed across various platforms and cloud providers.

Moreover, containerisation promotes scalability and efficient resource utilisation. Multiple containers

can be executed on a single host system and can be dynamically scaled up or down based on demand.

This flexibility enables efficient utilisation of computing resources and supports the development of

scalable and resilient applications.

Additionally, containerisation enhances the isolation and security of applications. Containers provide

a boundary between the application and the host system, preventing conflicts and dependencies. This

isolation improves security by limiting the impact of potential vulnerabilities within the containerised

application. The components of the IW-NET architecture that need to communicate with the Kafka

cluster are given access to it and Kubernetes ensures that, if necessary, the cluster can scale out –

expanding the number of its allocated resources by employing additional broker instances, in the form

of containers. The configuration required has been automated to help the system suffer minimum

service downtime while the transition takes place. Kafka shares a common Zookeeper cluster with the

processing and storage services.

2 https://kubernetes.io

https://kubernetes.io/

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 18

Figure 2-7: Deployment plan and interactions between the Pub/Sub, IAM and BDA components

More technical details on the system design and deployment plans available for the Pub/Sub as well
as the BDA and IAM service infrastructures will be provided in D1.6, given that this analysis is more
suitable to the technical nature of that deliverable. In Figure 2-7, we observe the complexity of the
deployment as well as the interactions between the modules of the three co-designed IW-NET
components.

Finally, a Kubernetes deployment-ready version of the software stack depicted Figure 2-6 is released
in the form of open-source software for reusability purposes, in the following repository:
https://github.com/iwnet/digitalization-infrastructure

2.4 Added Value for the IW-NET Architecture

The existence of a Publish/Subscribe mechanism is of critical importance in the design of the IW-NET

technical infrastructure architecture. As documented in multiple deliverables and highlighted in this

report, several components need to communicate with each other in a reliable manner. Thus, the task

of message exchange is offloaded to the mechanism especially deployed for that purpose and the rest

of the architectural components only need to implement thin clients that either send or receive

messages to or from specific topics. This design ensures that the different functionalities are decoupled

which is desirable for debugging, maintenance, and component/service-individual scaling reasons.

https://github.com/iwnet/digitalization-infrastructure

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 19

3 Secure Access and Identity Management
One of the most important tasks within the IW-NET project is the development of a Secure Services

Federation layer to secure the exchange of information between the different systems that participate

in the IW-NET ecosystem. This layer will be based on an open-source Identity and Access Management

(IAM) Framework and on encryption protocols for enabling secure and private communications.

In general, there are two different communication channels that can be used for data exchange in IW-

NET depending on the requirements. These channels are based on two different communication

protocols: REST and Publish-Subscribe. The Secure Services layer will be used to secure both channels.

The developed security solution will be used to support all IW-NET business cases and is currently

actively used to secure the communications between the Big Data infrastructure and the EPCIS

services, as well as data transfers from external data providers that push data in the Big Data storage

layer. The integration of the Secure Services with the various IW-NET components is presented in detail

in Figure 3-1.

Figure 3-1: Integration of the Security Services with the IW-NET components

In the rest of this section, we will initially describe the basic principles and operation of the IAM

framework that will be used with the Secure Services layer. The integration procedure of the Secure

Services with both of the communication channels will also be described together with the detailed

configuration that was used. Finally, we will present an example workflow for each channel of

communication, which depicts the required actions for achieving an end-to-end secure data exchange.

3.1 IAM Framework

Identity and Access Management (IAM) Frameworks are designed to offer the technology required to

ensure that the resources of a particular application are accessed only by authorised individuals/users.

This is achieved with the setup of the appropriate policies which encapsulate information that

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 20

authenticates a user and also identifies the resources that a user is authorised to access as well as the

actions that she is allowed to perform with them.

In this section we will present the architecture and configuration of Keycloak [4], which is the selected

state-of-the-art IAM framework that will be used in order to secure the access to the resources of the

IW-NET subsystems. An initial description of Keycloak and some high-level integration details with two

of the most important IW-NET infrastructure components i.e., the Big Data Analytics subsystem and

the Pub/Sub mechanism are already presented in D1.5. In this document we aim to provide a more

detailed description of the initial configuration and the usage of the secured IW-NET components.

In this subsection, Keycloak is briefly presented along with its semantics and the utilities it offers which

will be used in order to secure the IW-NET connectivity components. Keycloak is an open-source

Identity and Access Management software which is released under Apache License 2.0.

Before we explain how the Keycloak software will be used in IW-NET, it is necessary to describe the

basic entities that Keycloak encapsulates and on which it bases its operation. These entities are Users

and Resources. The basic need that led to the concept of IAM software being developed is that we

must be able to control whether a User is eligible to access some Resource. In order to decide whether

the User is eligible or not, the need for a decision maker emerges. This decision maker is called a

Resource Server since it handles access to various resources. A Resource server is considered to be a

Client instance in the context of Keycloak. In general, a Client is the representative of each application

that cooperates with Keycloak in order to secure itself by requesting Keycloak to authenticate a User.

A Client however can also be an entity that just wants to request identity information or an access

token so that it can securely invoke other services on the network that are secured by Keycloak.

During the operation of the Resource Server, the decisions about Users accessing resources are based

on some defined rules, which are called Policies and Permissions. As described in D1.5, “Permissions

essentially relate Policies with Resources. More specifically, a Permission applies some Policies to a

Resource. The two most common Policies that are used to define Permissions are Role and Group

Policies. We will focus on the usage of Roles as they will be used for securing a REST API that serves the

IW-NET data (in this case the Resources that need to be protected are the REST server URIs). A Role

could be described as an abstract description for a User. Multiple Users could have the same Role and

a single User could have many different Roles. A Role Policy contains one or more Roles that their users

will be given access to some Resource(s) by creating the appropriate Permission(s). Thus, a User can

access a Resource (i.e. URI) if a Permission exists that applies to this Resource a Policy containing their

Role.”

Another important entity inside Keycloak is the Scope. A Scope describes the access pattern for a

protected Resource or a Client, for example if a Resource is only allowed to be read then a Scope for

the reading capability should only be defined for this resource. Of course in case a particular User has

the privilege to update or delete this Resource another Scope can be defined for this purpose and be

assigned only to this User. “Permissions can be used to relate Policies with Scopes to provide a User

with access only to some Scopes. In another more generic case, a Client that should only read data from

an application must be assigned the appropriate Client Scope. Client Scopes allow us to define sets of

protocol mappers and roles for the Client. The application that the Client tries to access will cooperate

with Keycloak and will only allow the Client to perform the operation if it has the required Client Scope.

This approach is used to secure access to the Pub/Sub system that is used by IW-NET for message

transportation, by creating for each client the appropriate Client Scopes for reading or writing each

specific message type.”

Apart from the Resource Servers responsibility to decide if a User is eligible/authorised to access a

resource, also known as authorization, there is also the need to initially identify valid Users, which is

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 21

the well-known authentication process. Keycloak supports as Authentication and Authorization

protocols both SAML [5] and openid-connect [6]. We have used the openid-connect protocol for the

integration with the IW-NET components, which is based on the OAuth authorization protocol [7]. The

openid-connect protocol relies on the usage of tokens. There exist two types of tokens that support

the authentication and authorization procedures: the identity token, which acts as a certificate for the

user identity (authentication) and the access token, which indicates the Permissions of a User

(authorization). The identity token essentially contains information about the User such as username,

email, and other profile information. The access token is digitally signed and contains access

information (like Scopes, Permissions on Resources, etc.) that the remote service can use to determine

what Resources the User is allowed to access.

In the next subsection we will present in detail the configuration used with Keycloak for enabling the

establishment of secure connections with both the REST and Pub/Sub endpoints that are used for data

transfer. We will also present the corresponding secure access workflows for both connectivity

components.

3.2 IAM Framework Configuration and Workflows

3.2.1 IW-NET IAM Configuration

In this section we will describe in detail the configuration that is applied to the Keycloak server which

is used by the IW-NET components. There are two different connectivity components, as we have

previously mentioned, the Pub/Sub server which is used for message transfer and the REST server

provided with the BDA stack which is used for raw data transfer from within the BDA storage engines.

Both components will rely on Keycloak for allowing authorised data access. Moreover, communication

will be encrypted with the use of SSL protocols. Keycloak client adapters will be used in both

components, which are prebuilt libraries that can be used to secure applications and services in

cooperation with the Keycloak server.

3.2.1.1 Pub/Sub Clients

Starting from the Pub/Sub server which is a Kafka installation (as described in D1.5 and in section 2 of

the present document), there are three different components that need to be secured individually for

establishing secure Pub/Sub connections end-to-end: the Kafka broker, and any Kafka producer or

consumer instance. For this purpose, the Kafka broker must be initially connected to the Keycloak

server though a Client that will have the appropriate Client Scope that will authorize it to perform any

administrative task. Client Scopes for Kafka will be defined using the Uniform Resource Name (URN)

format: ‘urn:kafka:{resourceType}:{resourceName}:{operation}’ where the ‘resourceType’

field can be one of ‘topic, group, cluster’ and the ‘operation’ field can have any value from the

following: ‘read, write, create, delete, alter, describe, cluster_action’.

Continuing with the setup of the secure broker, at first the Client Scope named

‘urn:kafka:cluster:kafka-cluster:cluster_action’ is created in the Keycloak Admin User

Interface as shown in Figure 3-2. Then a Client named ‘kafka-broker’ is created and is assigned with

the previously created Client Scope as shown in Figure 3-3 and Figure 3-4 respectively.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 22

Figure 3-2: Create Client Scope for the Kafka broker

Figure 3-3: Create Client for the Kafka broker

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 23

Figure 3-4: Associate client with client Scope for the Kafka broker

The final step to launch a secure Kafka broker is to retrieve the ‘kafka-broker’ Client credentials from

the corresponding UI tab and create a properties file consistent with the Kafka client templates

developed. The Keycloak Client adapter which was used to connect the Kafka broker with the Keycloak

server using the provided properties file is based on the Kafka OAuth library [8].

After creating the secure Kafka broker, let us assume a scenario in which we need to publish a message

for the topic ‘topic1’. In this case a Client for a Kafka producer needs to be created that will have the

appropriate Client Scope that will allow it to publish in this particular topic. We start again by creating

in a similar way the necessary Client Scopes as shown in Figure 3-5, which are in this case

‘urn:kafka:topic:topic1:describe’ and ‘urn:kafka:topic:topic1:write’. Then a Client named

‘kafka-topic1-producer’ is created and assigned with these two Scopes as shown in Figure 3-6 and

Figure 3-7 respectively.

Figure 3-5: Create Client Scope for Kafka producer

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 24

Figure 3-6: Create Client for Kafka producer

Figure 3-7: Associate client with the required Scopes for the Kafka producer

Finally, for reading messages from ‘topic1’ with the corresponding secure Kafka consumer the

procedure of creating the necessary Client is similar with the producer with two differences: first a

Client Scope named ‘urn:kafka:topic:topic1:read’ is assigned to the client instead of the

‘urn:kafka:topic:topic1:write’ Scope, and secondly two more Client Scopes must be created and

assigned to the Client that correspond to the Kafka group that consumes this topic (‘group1’) named

‘urn:kafka:group:group1:read’ and ‘urn:kafka:group:group1:describe’.

3.2.1.2 REST API Client

For securing the data transfer that happens through the REST server of the BDA infrastructure of IW-

NET, the procedure is different since we aim to protect different URIs in this case. However, similarly

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 25

with the Kafka broker, the REST server must initially be connected with the Keycloak server using a

Keycloak client adapter. The client adapter used is the Spring Security adapter since the REST server

is developed as a Spring-boot application. For the initial connection of the adapter with the Keycloak

server we start by creating a Client named ‘bda_client’ which is a Bearer Only Client meaning that it

will only be used to evaluate User Access Tokens before serving Users with the requested URIs. The

client is created as shown in Figure 3-8, and we can observe that we must define in the field ‘Valid

Redirect URIs’ the base URL of the REST API.

Figure 3-8: Create a Keycloak client for the REST server

In order to launch the secure REST server, we first retrieve the ‘bda-client’ credentials from the

corresponding UI tab and, knowing the Keycloak server URL, we update the REST server properties file

as shown in Figure 3-9. The parameters of Figure 3-9 will be used by the Spring adapter to connect

with the Keycloak server.

Figure 3-9: Update the properties of the REST server

After launching the secure REST server, we can start defining each available URI as a Resource to

Keycloak and access to it shall be provided with a specific Role via the corresponding Policy and

Permission. Each User that will be related to this Role can have access to this URI. In this way different

Users can have access to different URIs of the BDA REST server according to their Role. Moreover,

multiple URIs can be defined inside a single Resource for allowing access to all of them with a specific

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 26

Role. We will next present a detailed example to better illustrate the usage of Roles, Policies and

Permissions in securing URIs.

Let us again assume a scenario where a set of URIs must be accessed only by a set of Users that are

considered to be the ‘scn_slug’ Users. We start be creating a Role that describes these Users and we

name the Role ‘scn_slug_user’ as shown in Figure 3-10. This Role is initially set to contain two

Keycloak Users, the ‘admin’ and ‘some_user’ as shown in Figure 3-11, but more Users can also be added

later.

Figure 3-10: Create a Role describing the Users

Figure 3-11: Define the Users in the Role

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 27

The next step is to define inside the ‘bda-client’ a new Resource under the authorization options of

the client. We place 6 different URIs inside this Resource which is named ‘slug resource’ as we can

see in Figure 3-12.

Figure 3-12: Create a Resource that contains some URIs

Following, again in the authorization options of the client, we select to create a Role policy named

‘slug policy’ that contains the ‘scn_slug_user’ role that we previously created (Figure 3-13). The

final step to grant access on the URIs of the ‘slug resource’ to the Users of the ‘scn_slug_user’ role is

to create a Resource-based Permission inside the client that will associate the selected Resource with

the corresponding policy containing this role as shown in Figure 3-14.

Figure 3-13: Create a Role Policy for the previously defined Role

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 28

Figure 3-14: Create the Permission that will associate the Resource with the Policy

After completing the previous steps, both Users ‘admin’ and ‘some_user’ will be authorised to get a

valid response from the BDA REST server for any of the URIs included in the resource.

3.2.2 Secure Access Workflows

In this section we will present the authentication and authorization workflows for both connectivity

components of IW-NET.

3.2.2.1 Pub/Sub Workflows

Based on the two basic actions that one can perform with the Pub/Sub system which are to publish

and receive a message, we will analyse in this subsection two separate workflows: one focusing on the

producer’s side and one on the consumer’s. The workflows are very similar in both cases.

Initially we assume that a User wants to publish a message for the topic ‘topic1’ using a Kafka

producer. A Client must exist for the producer (‘producer-client’) with the corresponding credentials

so that the producer can connect with the Keycloak server and request an access token for accessing

the broker. After the Keycloak server receives the producer client credentials, it authenticates the

client, and the client then receives the access token. If the client credentials are invalid the client

instead receives an Invalid Credentials message.

The producer can now request to publish a message for a particular topic in the broker using this access

token. The broker server is already running and is secured from the start, by connecting with the

Keycloak server using the ‘broker-client’ credentials. When the broker receives the request from

the producer along with the access token, the broker’s client contacts Keycloak to introspect this

Token. In particular, it verifies the signature of the token in cooperation with the Keycloak server, then

decides based on access information within the token whether or not to process the request. In this

case the ‘broker-client’ is trying to determine if the client has the required Scope for this action.

Considering such information contained in the access token, the broker either accepts the action (200

OK Response) or otherwise with a 401 Unauthorized message. In case the producer client is not even

correctly authenticated (for example with an invalid/expired token) the broker server responds with a

403 Forbidden message.

The complete workflow that we described in the previous paragraphs is graphically presented in Figure

3-15.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 29

Figure 3-15: Publish message workflow

The workflow for a Kafka consumer that wants to subscribe to a particular topic to be able to receive

relevant messages is almost identical and is presented in Figure 3-16. We will omit the workflow

description in this case since the procedure is the same as with the producers.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 30

Figure 3-16: Subscribe to message workflow

3.2.2.2 REST API Workflows

In this subsection we will describe thoroughly all the actions that are involved in the simple case that

a User wants to access a specific Protected Resource of the REST server i.e., a particular URI. Initially

we assume that a user named ‘User 1’ is defined as a Keycloak User and owns some credentials and

a Client also exists (‘client-1’) with the corresponding credentials so that the User can connect with

the Keycloak server and request an access token for ‘User 1’ to use it for accessing some other service.

After the Keycloak server receives the User and client credentials, it authenticates the user, and the

client then receives the access token. If the User credentials are invalid the client instead receives an

Invalid Credentials message.

‘User 1’ can now make REST invocations on the BDA REST server using this access token. The REST

server is already running and is secured from the start, by connecting with the Keycloak server using

the ‘bda-client’ credentials, which is a bearer-only client as we mentioned in subsection 3.2.1.2. The

User ‘User 1’ decides to request access to a specific URI of the REST server providing her access token

along. At this step, the REST server’s client contacts Keycloak to introspect this token. In particular,

once the REST service extracts the access token from the request, it verifies the signature of the token

in cooperation with the Keycloak server, then decides based on access information within the token

whether or not to process the request. In this case the ‘bda-client’ is trying to determine if the User

has the Permission to access the Protected Resource that includes this particular URI. Taking into

account such information contained in the access token, the REST server either responds with the

requested Resource (‘200 OK Response’) if the token information indicates that ‘User 1’ is authorised

for accessing it or otherwise with a ‘401 Unauthorized message’. In case the User is not even

correctly authenticated (for example with an invalid/expired token) the REST server responds with a

‘403 Forbidden message’.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 31

The complete workflow that we described in the previous paragraphs is graphically presented in Figure

3-17.

Figure 3-17: Workflow for REST API secure access

3.3 Deployment

As already discussed in the relevant sub-section on the Publish/Subscribe mechanism deployment and
system design, the IAM solution has been designed alongside the other main components that support
and enable Big-Data magnitude of data volume to be processed. The deployment has also been
designed in association with that of the BDA and Pub/Sub components. A deployment plan can be seen
in Figure 2-7. More technical details on the deployment plans available for the Pub/Sub as well as the
BDA and IAM service infrastructures will be provided in D1.6, given that this analysis is more suitable
to the technical nature of that deliverable.

A deployment-ready version of the software stack pictured in Figure 2-7 will be publicly available as
open-source software to serve reusability purposes. The repository can be found in Github:
https://github.com/iwnet/digitalization-infrastructure

3.4 Added Value for the IW-NET Architecture

The benefits of adding an IAM component to the IW-NET infrastructural architecture can be

summarised as follows. The presented solution enables the management of data and Resource access

https://github.com/iwnet/digitalization-infrastructure

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 32

patterns, therefore dictating workflows and dataflows between components of the IW-NET

architecture – regardless of whether these take place via the Pub/Sub mechanism or in a bilateral one-

to-one communication pattern. Taking into consideration how sensitive some of the operational data

can be, the need for secure access and identity management in the applications is paramount.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 33

4 IoT Data Streaming Integration with Blockchain
The Open IWT Platform enables flexible configurations of Inland Water Transport (IWT) operations and

trusted sharing of information between the stakeholders through blockchain. It uses the blockchain

technology to improve processes and transactions along the whole transport chain as well as to

increase the visibility of shipments and the provenance of messages. IoT data is a key-enabler for the

trustworthy monitoring of cargo in the IWT domain that serve as an extra step of logistics events

verification to increase the accountability of the stakeholders' claims.

4.1 Blockchain and IoT

Blockchain is a digital notebook that is shared among many computers, where important information

is stored to make sure it's secure and undisputable. In the convergence of blockchain and IoT, the

digital notebook keeps track of what all the connected IoT objects are doing and makes sure everything

is working correctly and safely [9], [10], [11]. It resembles a super smart notebook that can help all the

things in a house, factory or even the supply chain work together better. More specifically, blockchain

and IoT intersect in several ways:

 Smart Contracts: Smart contracts can be used to automate processes and facilitate secure

communication between IoT devices. For example, a smart contract could be used to

automatically trigger a payment when a certain condition is met, such as a sensor detecting a

low temperature in a refrigerator.

 Decentralised Identity: Blockchain can be used to provide decentralised identity to IoT devices,

ensuring that only authorised devices can access certain networks or resources.

 Supply Chain Management: Blockchain can be used to track the movement of goods through

a supply chain, providing transparency and reducing the risk of fraud. This can be particularly

useful in the case of IoT-enabled devices, such as shipping containers fitted with sensors.

 Data Management: Blockchain can be used to securely store and share data collected by IoT

devices, providing transparency, and reducing the risk of data breaches.

 Secure Communication: Blockchain can be used to establish secure and private

communication channels between IoT devices, allowing them to share data and interact with

one another without the need for a centralised intermediary.

Overall, the integration of blockchain with IoT has the potential to improve the security, efficiency, and

trustworthiness of IoT-enabled systems and devices. In IW-Net, IoT enables live monitoring of logistics

assets to enhance the traceability of cargo while the integration of IoT and Blockchain enables the

employment of smart contracts to automate processes and improve accountability of actions and

events.

4.2 The IW-Net Blockchain connector

The IW-Net blockchain connector is the component of the architecture that integrates the IoT

infrastructure with the blockchain. As shown in Figure 2-1, IoT measurements are ingested in the IW-

Net platform through a Pub/Sub mechanism (Apache Kafka) and once the data reach the Pub/Sub

service, the blockchain connector forwards them to the smart contracts through the dedicated REST

API endpoints of the blockchain component.

The design of the IW-Net architecture, API specifications and integration aspects are described in detail

in the rest of the WP1 deliverables. Moreover, the architecture of the blockchain component is

described in D1.7, presenting the smart contracts, the APIs and the blockchain infrastructure that was

deployed to support non-repudiation of transactions, events and notifications data in the IW-Net

application scenarios.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 34

This document focuses on the design and development of the blockchain connector, which is an

integrator between the IoT data and the blockchain component. It handles the ingestion of IoT data

from the distributed Pub/Sub mechanism to the blockchain by registering to specific topics of the Kafka

service. Consequently, only pointers to the IoT data are stored on the ledger, forming a timestamped

and immutable chain of transactions, through the IoT API of the blockchain component.

The following use-cases are studied, where the blockchain connector is employed towards

guaranteeing the authenticity of the data:

 late delivery of goods,

 damaged goods,

 suspicion of a break in the cold chain.

In particular, the IoT sensors are continuously feeding the platform with timestamped data about the

location of the goods and about environmental metrics during the transport i.e., temperature,

humidity, turbulence. These metrics should be trustfully validated through smart contracts. They may

automatically trigger other actions involving multiple stakeholders such as the alarm notification in

case of a violation of a contract term. Moreover, the traceability of information flows by all the involved

actors in the supply chain should be guaranteed to enable non-repudiation and automatic settlement

of disputes.

In terms of privacy, as little data as possible must be stored on chain (hashes of large documents/files

are stored off-chain) to ensure the highest level of trust and privacy between supply chain

stakeholders.

4.3 Design and Architecture

As shown in Figure 4-1 the Blockchain Connector takes advantage of the POST /event endpoint of the

Blockchain Component API to push pointers and metadata of batched IoT data to the blockchain, such

as a list of temperature recordings (for cold chain control), photographs, signatures and/or comments

by the stakeholders (proof of delivery, damaged goods). The data for off-chain storage are pushed back

to the distributed Pub-Sub and consequently stored in the IW-Net Data Hub.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 35

Figure 4-1. Blockchain Connector Component

4.4 Implementation

The Blockchain Connector takes advantage of the heterogeneous datasets within the IW-Net Platform

to trigger smart contracts and inform decisions by storing their metadata on chain. To this end, it acts

both as a producer and consumer of the distributed Pub/Sub, namely the Kafka deployment in the IW-

Net Platform.

As per the consumer role, the Connector subscribes to a Kafka topic and reads IoT data from sensors

by employing advanced techniques for the efficient management and filtering of the IoT messages

according to their type, such as environmental measurements, arriving and departing events etc. After

the validation of each message to be in the correct JSON format, the module searches the messages in

multiple parallel threads and minimises unnecessary access to the Kafka topic for increased

performance. The producer’s module of the Blockchain Connector pushes two types of messages to

the topic, either trusted events produced by the smart contracts such as alarms for contract violation

or batches of IoT data to be stored off-chain in the IW-Net Data Hub.

All the interactions happen through the REST API of the Blockchain Component that is extensively

documented in D1.7 and it is briefly described below for the completeness of the document. The

endpoints handle the forwarding of data to the underlying smart contracts of the blockchain network

and are grouped into three categories according to the three phases of the project application

scenarios, namely:

 planning for the operations related to Transport Instructions (TIs) and Transport Instruction

Responses (TIRs)

 execution for all the operations related to Transport Status Notifications (TSNs) and Events

 analysis for exposing functionalities to analyse the data

Table 3 lists all the endpoints of the REST API of the IW-Net Blockchain Component.

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 36

Table 3: Blockchain REST Server Endpoints

API Endpoint Group Description

POST /ti planning Adds a new TI record

POST /tir planning Adds a new TIR record

POST /event execution Adds a new event record

POST /tsn execution Adds a new TSN record

GET /analysis/bysscc analysis Returns all SSCC linked records in the ledger

GET /analysis/bygsin analysis Adds a new Transport Instruction record

The /event POST endpoint is the one employed by the Blockchain Connector to send data to be stored

in the blockchain. The full description of the endpoints, the responses and the data schemas of the

REST API are developed using the OpenAPI specification3.

Finally, the Blockchain Connector is configurable through the general configuration file of the IW-Net

Blockchain Component. The Distributed Pub-Sub to be connected to (the Kafka Broker URL), together

with the topic used by the Blockchain Connector, are exposed in this file and the communication

between the Connector and the Kafka service is protected using openid-connect authentication, which

is a token-based authentication mechanism to allow secure client requests, as described in D1.5.

4.5 Added Value for the IW-Net Architecture

The Blockchain Connector together with the entire Blockchain Component are beneficial to the IWT

domain by providing increased transparency and accountability to supply chain operations, security of

transactions, efficiency in operations and traceability in the entire supply chain. More specifically, it

provides:

 Transparency throughout the supply chain, allowing all parties involved to see the movement

of goods and the status of shipments in real-time. This can improve collaboration and

communication among supply chain partners and reduce the risk of fraud.

 Security to supply chain operations by encrypting sensitive IoT data and providing tamper-

proof records. This can help prevent data breaches and protect against cyber-attacks.

 Efficiency in supply chain operations by automating processes and reducing the need for

intermediaries through smart contracts. For example, smart contracts are used to

automatically trigger payments or release goods when certain conditions are met. This can

help to speed up the movement of goods and reduce costs.

 Traceability by providing an immutable record of the entire journey of a product. This can help

identify any issues as well as improve accountability.

3 OpenAPI specification v3.0, https://swagger.io/specification/

https://swagger.io/specification/

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 37

5 Conclusion
This document presents the work undertaken in the context of Task 1.2 Open security preserving data

and services connectivity components - federation of IWT systems. The purpose of this task has been

the development of a secure services federation layer that integrates and extends open-source

components to allow secure connectivity with:

a) external resources, such as Inland Port Management and Transportation Management

systems,

b) internal resources, i.e., components of the IW-NET infrastructure.

The system design, implementation and deployment methods follow state-of-the-art standards set by

industry-leading practices, which are highlighted in this report. A working, deployment-ready version

of the solution including the Publish/Subscribe mechanism and Secure Access and Identity

Management system are publicly available as open-source software in a dedicated Github repository.

The integration of IoT with Blockchain technologies enables the secure and trustworthy monitoring of

cargo across the IWT chain and increases accountability of all IWT stakeholders. On top of that, the

employment of smart contracts offers an automated and accountable solution for contract negotiation

and application.

The different components presented throughout this report along with the remaining components of

WP1 - such as Big Data analytics and Machine Learning - constitute the different technical solutions

that were developed in close collaboration among all WP1 partners and are brought together to deliver

the Open IWT Platform.

https://github.com/iwnet/digitalization-infrastructure

D1.2 – Open Security Preserving Data and Services Connectivity Components - Federation of IWT
Systems

© IW-NET 38

6 References

[1] “POINT-TO-POINT AND PUBLISH/SUBSCRIBE MESSAGING MODEL,” DEV Community 👩💻👨💻.

https://dev.to/tranthanhdeveloper/point-to-point-and-publish-subscribe-messaging-model-41j0

(accessed Nov. 29, 2022).

[2] “Apache Kafka,” Apache Kafka. https://kafka.apache.org/ (accessed Nov. 01, 2021).

[3] “Transmission Control Protocol,” Internet Engineering Task Force, Request for Comments RFC

793, Sep. 1981. doi: 10.17487/RFC0793.

[4] “Keycloak.” https://www.keycloak.org/ (accessed Nov. 01, 2021).

[5] “Security Assertion Markup Language,” Wikipedia. Oct. 27, 2021. Accessed: Nov. 01, 2021.

[Online]. Available:

https://en.wikipedia.org/w/index.php?title=Security_Assertion_Markup_Language&oldid=10521896

80

[6] “OpenID Connect | OpenID,” Aug. 01, 2011. https://openid.net/connect/ (accessed Nov. 01,

2021).

[7] “OAuth 2.0 — OAuth.” https://oauth.net/2/ (accessed Nov. 01, 2021).

[8] “Lib-Kafka-OAuth.” kafka-security, Nov. 01, 2022. Accessed: Dec. 05, 2022. [Online]. Available:

https://github.com/kafka-security/oauth

[9] H. -N. Dai, Z. Zheng and Y. Zhang, "Blockchain for Internet of Things: A Survey," in IEEE Internet of

Things Journal, vol. 6, no. 5, pp. 8076-8094, Oct. 2019, doi: 10.1109/JIOT.2019.2920987.

[10] Md Ashraf Uddin, Andrew Stranieri, Iqbal Gondal, Venki Balasubramanian, A survey on the

adoption of blockchain in IoT: challenges and solutions, Blockchain: Research and Applications, vol. 2,

i. 2, 2021, https://doi.org/10.1016/j.bcra.2021.100006.

[11] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras and H. Janicke, "Blockchain

Technologies for the Internet of Things: Research Issues and Challenges," in IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 2188-2204, April 2019, doi: 10.1109/JIOT.2018.2882794.

