

10/16/2023

Innovative vessel design and IWT optimisation on the river Danube

Bernhard Bieringer Bianca Duldner-Borca Matthias Prandtstetter

> Co-funded by the Horizon 2020 Framework Programme of the European Union

New Design Options for Improved Navigability

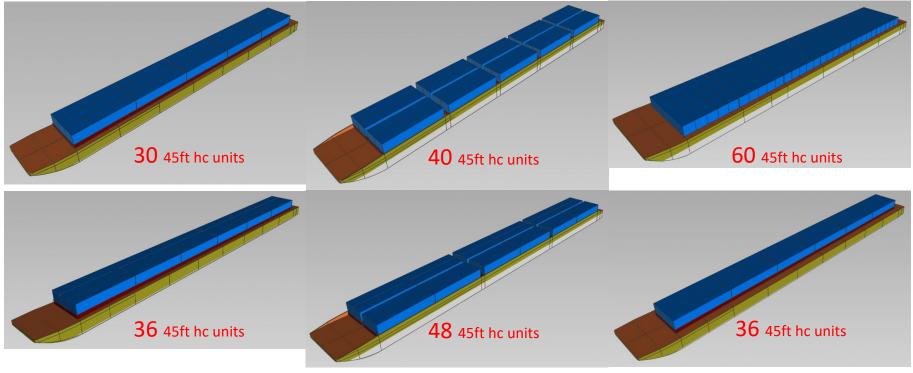
Considerations on status quo

- Transport of containers by inland waterway in Danube corridor with considerable margins for improvement
- Available barges not specifically designed for container transport
 - Europa 2b 24 45ft high-cube units in 2 layers
 - Europa 3a 30 24ft high-cube units in 2 layers
- Barges should be capable of accommodating in particular 45' pallet-wide high-cube units in order to ensure seamless integration in logistic chains
- Existing infrastructure has an impact on possible/feasible barge dimensions
 - → Waterway infrastructure analysis
 - → Port infrastructure analysis

You can't cheat on good old Archimedes

You can't cheat on good old Archimedes

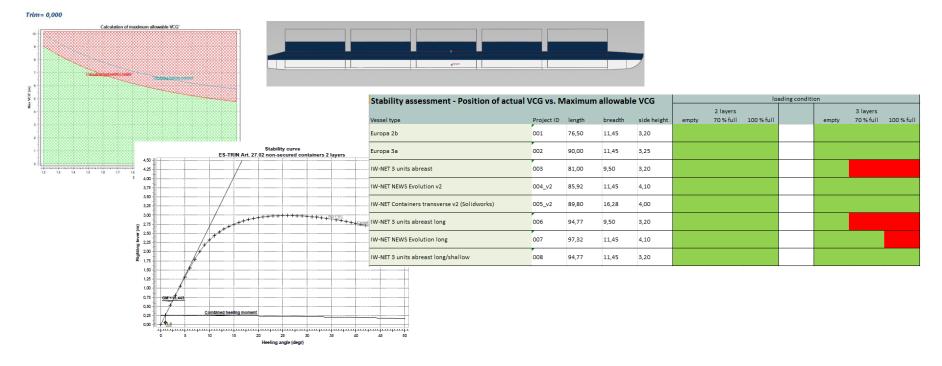
- In general: high cargo capacity for economic efficiency
- Barge dimensions limited by existing infrastructure:
 - Length and breadth: lock dimensions
 - Draught:


- fairway depth
- Air draught:
- bridge height
- "shoebox"-design not energy efficient with a view to hydrodynamics "block coefficient" of typical inland barges approx. 0,9
- Container cargo comparably lightweight typical volumetric density:
 - 45' high-cube container: 0,35 t/m³
 - Petrol: 0,72 0,78 t/m³
 - Gravel: $1,8-2,7 \text{ t/m}^3$
 - Iron ore: 4,0 t/m³

Barge design

New design options for barges

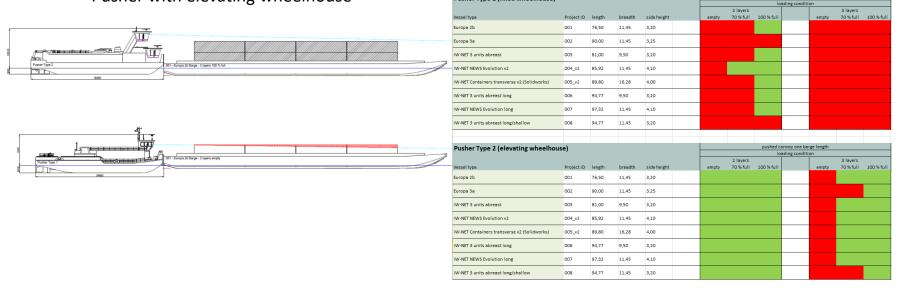
• 6 new barge types developed



Barge design

Stability assessment

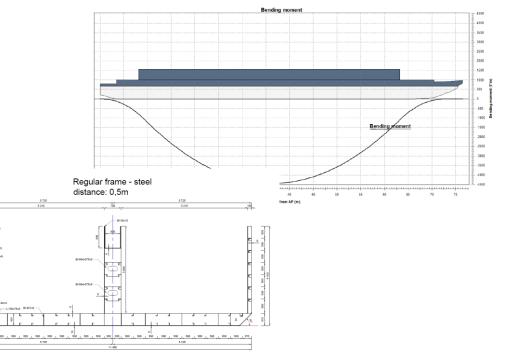
• In accordance with Chapter 27 of ES-TRIN 2021 for non-secured containers



Barge design

pushed convoy one barge length

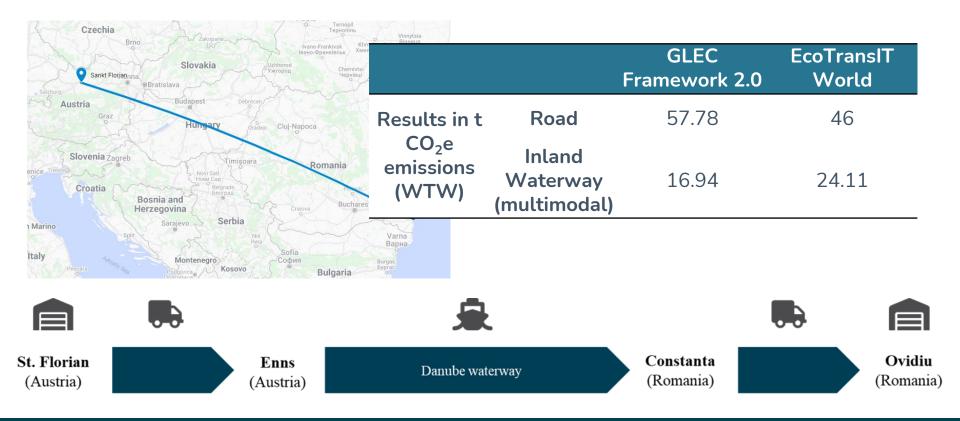
Sightlines assessment


- Checked against requirements of CEVNI Article 1.07
 - Pusher with fixed wheelhouse
 - Pusher with elevating wheelhouse

Pusher Type 1 (fixed wheelhouse)

Assessment of longitudinal strength – different construction materials

- Benchmark: section modulus for typical cross-section in grade A shipbuilding steel
 - Aluminium
 - Girders in high-tensile steel (S355, S460)
- Aluminium
 - ca. 30 % lighter than steel
 - on average 0,14 m less draught
 - 2,5 3 x building costs
- High-tensile steel
 - ca. 10 % lighter than grade A
 - on average 0,05 m less draught
 - Building costs nearly on par



GHG emission calculations in the IWT sector

- for many companies, tracking GHG emissions from supply chain transportation is a challenge little information is directly available from carriers
- calculations with primary data, with program data, with detailed modeling or with default data
- standards and tools for logistics emission calculation

	CALCULATION PARAMETERS		BS EN 16258:2012
Global 7	Input mode	Standard 🗸	
Logistics	Freight	Amount Weight 100 Bulk and Unit Load (Tonnes) マ	
Emissions	Origin	City district Please press ENTER to confirm.	BSI Standards Publication
Council	Choose transport modes: Multiple choice possible		Methodology for calculation and declaration
Framework	Destination	Truck Train Arplane Sea ship Barge	of energy consumption and GHG emissions of transport services (freight and
for Logistics Emissions Accounting and	Destination	City district Please press ENTER to confirm.	passengers)
Reporting www.Li		CALCULATE	
Charact Preight		EcoTransIT	EN16258
Child GLEC			

Transport example: Comparing CO2e emissions savings by using IWT instead of road transportation

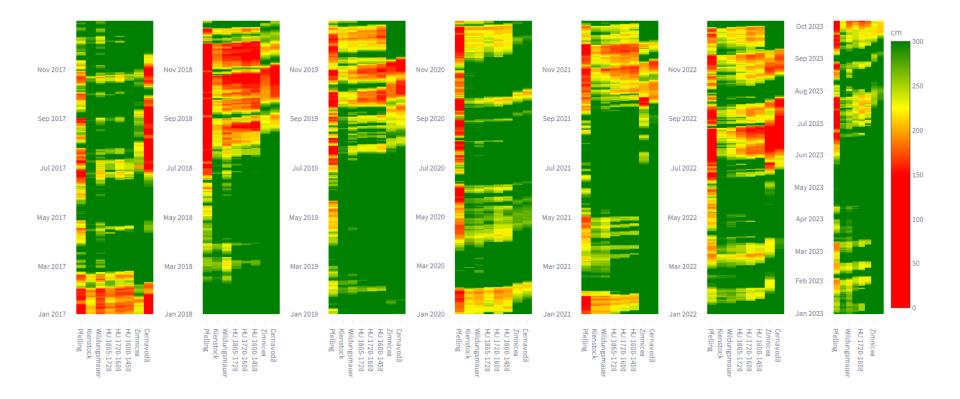
Conclusion

- great potential to save CO2 when using multimodal transport
- results are different depending on the input parameters and the data source
- calculation of many transport examples and the comparison with different methods and tools could provide important further insights into savings
- it should be a goal to get more primary data (fuel consumption) or actual emissions for calculating transport emissions - very challenging
- handling is not included in the calculations, although it is an important component in multimodal transport

Data-driven Navigability Visualisation Tool

Basic Idea

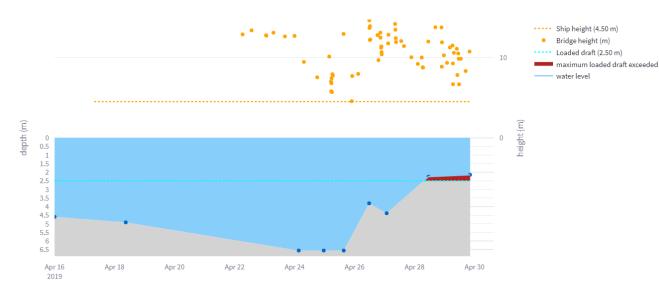
- Assessing the feasibility of river transportation based on (historic) data
 - Water level
 - Departure location
 - Arrival location
 - Loading Draught
 - Travel speed
 - Operating hours


Goal

- Build a basis for analysing (especially) economic feasibility
 - How is the overall water level situation?
 - Is my specific route prone to incidents?
 - How was the situation over the last years?

Water level along the Danube over the time

Single Trip Information


O Historical water levels

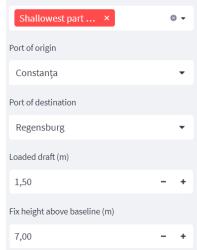
- Trip Simulation
- Advanced functions

Port of origin Constanța -Port of destination Regensburg -Departure 2019/04/16 Average speed over ground per operating hour (km/h) 10,00 _ + Operating hours per day 14 24 Loaded draft (m) 2,6 _ +

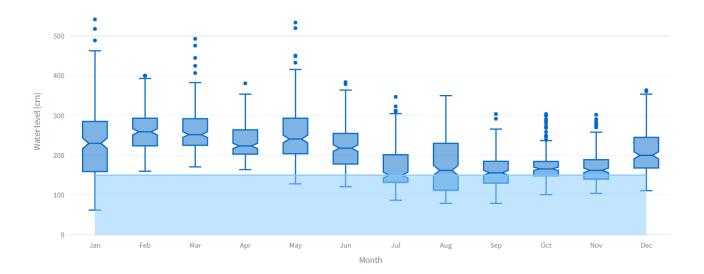
Press Enter to apply

Constanța→Regensburg

07/05/2020



Statistical Evaluation


○ Historical water levels

- Trip Simulation
- Advanced functions

Shallowest part of the stretch by month between Constanța and Regensburg

Further development of the visualisation tool

- The tool will be further developed in accordance with AIT
- Project within the context of a doctoral thesis on the topic "Economic evaluation of resolving nautical bottlenecks on inland waterways"
- The aim is to compare transport flows derived from historical data, with theoretically feasible transport flows after removing bottlenecks, and thus, evaluating the economic benefit
- Transportation data (e.g. port of departure, port of destination, type of goods, amount, vessel type incl. unloading depth) will be included in the tool to visualize these transport flows